Damage estimates of particulate matter air pollution reported in study

A team of researchers including University of New Mexico economics professor Andrew Goodkind is addressing the deadly problem of particulate matter air pollution in the U.S. and how to best mitigate it.

Their article, titled “Fine-scale damage estimates of particulate matter air  reveal opportunities for location-specific mitigation of emissions,” is being published in Proceedings of the National Academy of Sciences (PNAS). It was co-authored by Christopher Tessum, University of Washington, Department of Civil and Environmental Engineering; Jay Coggins, University of Minnesota, Department of Applied Economics; Jason Hill, University of Minnesota, Department of Bioproducts and Biosystems Engineering; and Julian Marshall, University of Washington, Department of Civil and Environmental Engineering.

In 2011 alone, the authors say  (PM2.5) air pollution was responsible for an estimated 107,000 premature deaths. The researchers approximate those deaths cost society around $886 billion, and more than half of them were at least partially the result of pollution caused by  (i.e. transportation, electricity generation).

PM2.5 are  that generally have a diameter of only 2.5 micrometers or smaller and are so tiny, they can only be seen with an electron microscope. For scale, that’s about 3 percent of the diameter of a single human hair. The particles often carry microscopic solid or liquid drops leftover from when they were formed during complex chemical reactions and can sometimes contain dangerous elements. Their small, light nature allows them to stay in the air longer than heavier particles, increasing the possibility of being inhaled and settling into the lungs or bloodstream.

“The impact of particulate matter air pollution is enormous even in countries with relatively good air quality like the U.S.,” Goodkind said. “There is still substantial room for improvement to the  from reducing emissions, even though we have dramatically improved our air quality over the last 40 years.”

Researchers say health burdens of PM2.5 and its precursors vary widely depending on where emissions are released. Goodkind and his co-authors find that 33% of damages occur within 8 km of  sources, but 25 percent occur more than 150 miles away. Those statistics emphasize the importance of tracking both local and long-range impacts, which is another element of what the paper addresses.

“Sources in the same , releasing the same quantity of emissions, can have orders of magnitude difference in their impacts on health,” Goodkind said. “Identifying those sources with the largest impacts can help improve our decision making about how to reduce pollution.”

The team developed a model for calculating location-specific damages due to primary PM2.5 and PM2.5 precursor emissions. Based on the extensive modeling efforts, the researchers are able to rapidly identify the  of releasing emissions from any location in the U.S. They then applied the tool to the U.S. emissions inventory to better understand the contribution of each economic sector on reduced air quality. Such information will be critical in assisting policymakers who are deciding how and where to prioritize pollution mitigation efforts.

Read more